Lecture 12: Magnetic Forces (cont'd) Ch. 27: Sources of the magnetic field

Looking forward at ...

- how to analyze magnetic forces on current-carrying conductors.
- Loop of current is a magnetic dipole
- DC electric motors
- what is the fundamental reason for magnetic fields
- how to calculate the magnetic field produced by a single moving charged particle, a straight current-carrying wire, or a current-carrying wire bent into a circle.
- why wires carrying current in the same direction attract, while wires carrying opposing currents repel.

Velocity selector

- A velocity selector uses perpendicular electric and magnetic fields to select particles of a specific speed from a beam.
- Only particles having speed
 v = E/B pass through
 undeflected.

Source of charged particles

By the right-hand rule, the force of the \vec{B} field on the charge points to the right.

The force of the \vec{E} field on the charge points to the left.

For a negative charge, the directions of *both* forces are reversed.

The magnetic force on a current-carrying conductor

- The figure shows a straight segment of a conducting wire, with length *l* and cross-sectional area *A*.
- The magnitude of the force on a single charge is $F = qv_d B$.
- If the number of charges per unit volume is *n*, then the **total force** on all the charges in this segment is

$$F = (nAl)(qv_{d}B) = (nqv_{d}A)(lB) = IlB$$

A more formal way to get the force on a *small length dl* of the conductor:

$$\overrightarrow{dF} = dq \vec{v} \times \vec{B} = dq \frac{\overrightarrow{dl}}{dt} \times \vec{B} = \frac{dq}{dt} \overrightarrow{dl} \times \vec{B} = I \overrightarrow{dl} \times \vec{B}$$

The magnetic force on a current-carrying conductor

• The force is always perpendicular to both the conductor and the field, with the direction determined by the same right-hand rule we used for a moving positive charge.

Force \vec{F} on a straight wire carrying a positive current and oriented at an angle ϕ to a magnetic field \vec{B} :

- Magnitude is $F = IlB_{\perp} = IlB \sin \phi$.
- Direction of \vec{F} is given by the right-hand rule.

The magnetic force on a current-carrying conductor

• The magnetic force on a segment of a straight wire can be represented as a vector product.

Force and torque on a current loop

- The net force on a current loop in a *uniform* magnetic field is zero.
- $\tau = 2\frac{b}{2}F = bIaB = IAB$
- We can define a magnetic moment μ with magnitude *IA*, and direction as shown.
- The net torque on the loop is given by the vector product (maximum torque when $\vec{\mu} \perp \vec{B}$)

•
$$U_m = -\vec{\mu} \cdot \vec{B}$$

Magnetic dipole in a nonuniform magnetic field

- A current loop with magnetic moment pointing to the left is in a magnetic field that decreases in magnitude to the right.
- When these forces are summed to find the net force on the loop, the radial components cancel so that the net force is to the right, away from the magnet.

How magnets work: pre-existing dipoles

- (a) An unmagnetized piece of iron. Only a few representative atomic moments are shown.
- (b) A magnetized piece of iron (bar magnet). The net magnetic moment of the bar magnet points from its south pole to its north pole.

(a) Unmagnetized iron: magnetic moments are oriented randomly.

(b) In a bar magnet, the magnetic moments are aligned.

The direct-current motor

- Below is a schematic diagram of a simple dc motor.
- The **rotor** is a wire loop that is free to rotate about an axis; the rotor ends are attached to the two curved conductors that form the **commutator**.
- Current flows into the red side of the rotor and out of the blue side.
- Therefore the magnetic torque causes the rotor to spin counterclockwise.

Ch. 27 : The magnetic field of a moving charge

• A moving charged particle generates a magnetic field that depends on its velocity, its charge and the distance from it.

View from behind the charge

The \times symbol indicates that the charge is moving into the plane of the page (away from you).

• Very similar to Coulomb's law:

Don't confuse this formula with the magnetic force $\vec{F} = q\vec{v} \times \vec{B}$, which tells how a moving charge reacts to a magnetic field!

Magnetic field of a current element

- The total magnetic field of several moving charges is the vector sum of each field.
- The magnetic field caused by a short segment of a currentcarrying conductor is found using the **law of Biot and Savart**:

View along the axis of the current element

Magnetic field of a straight current-carrying conductor

- Let's use the law of Biot and Savart to find the magnetic field produced by a straight current-carrying conductor.
- The figure shows such a conductor with length 2*a* carrying a current *I*.
- We will find \vec{B} at a point a distance x from the conductor on its perpendicular bisector.

•
$$\vec{B} = I\hat{k}\int_{-a}^{a}\frac{dy}{r^2}\sin(\phi), \quad \sin(\phi) = \frac{x}{r},$$

• $\vec{B} = I\hat{k}\int_{-a}^{a} \frac{x \, dy}{(x^2 + y^2)^{3/2}}$, we had a similar integral for E previously!

Magnetic field of a straight current-carrying conductor

• Since the direction of the magnetic field from all parts of the wire is the same, we can integrate the magnitude of the magnetic field and obtain:

$$B = \frac{\mu_0 I}{4\pi} \frac{2a}{x\sqrt{x^2 + a^2}}$$

• As the length of the wire approaches infinity, *x* >> *a*, and the distance *x* may be replaced with *r* to indicate this is a radius of a circle centered on the conductor:

Magnetic field of a straight current-carrying conductor

• The field lines around a long, straight, currentcarrying conductor are circles, with directions determined by the righthand rule.

Right-hand rule for the magnetic field around a current-carrying wire: Point the thumb of your right hand in the direction of the current. Your fingers now curl around the wire in the direction of the magnetic field lines.

Force between parallel conductors

- The magnetic field of the lower wire exerts an *attractive* force on the upper wire.
- If the wires had currents in *opposite* directions, they would *repel* each other.

Force between parallel conductors

- The figure shows segments of two long, straight, parallel conductors separated by a distance *r* and carrying currents *I* and *I*' in the same direction.
- Each conductor lies in the magnetic field set up by the other, so each experiences a force.

The old definition of the ampere

• The SI definition of the **ampere** is:

One ampere is that unvarying current that, if present in each of two parallel conductors of infinite length and one meter apart in empty space, causes each conductor to experience a force of exactly 2×10^{-7} Newtons per meter of length.

- This definition of the ampere is what leads us to choose the value of $4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$ for the magnetic constant, μ_0 .
- The SI definition of the **Coulomb** is the amount of charge transferred in one second by a current of one ampere.
- Since last year the Coulomb is the primary unit and Amperre is C/s.

Magnetic and electric fields are linked

- Moving charged particles create both electric and magnetic fields.
- Charged particles moving in electric and magnetic fields experience electric and magnetic forces.
- If two charged particles travel with the same constant velocity, in their reference frame they will experience only electric forces.
- To have the Newton's second law the same in the new reference frame, both the electric and magnetic fields should transform in such a way, that each of them has electric and magnetic components in the other reference frame.
- Magnetic fields and electric fields are different manifestations of a unified Electromagnetic field! In some reference frames, there can be only electric fields, in others only magnetic fields.

Magnetic field of a circular current loop

- Shown is a circular conductor with radius *a* carrying a counter-clockwise current *I*.
- We wish to calculate the magnetic field on the axis of the loop.
- $\vec{B}_{\perp} = 0$, diametrically opposite elements cancel their contributions.

•
$$B_x = \oint \frac{\mu_0}{4\pi} \frac{|Id\vec{l} \times \hat{r}|}{r^2} \cos\theta = \frac{\mu_0}{4\pi} \oint I \frac{dl}{r^2} \frac{a}{r}$$

• All quantities in the integral are constants! $\oint dl = 2\pi a$

•
$$B_x = \frac{\mu_0}{4\pi} I \frac{2\pi a^2}{r^3}, \quad r = \sqrt{x^2 + a^2}$$

Magnetic field of a circular current loop

- The magnetic field along the axis of a loop of radius *a* carrying a current *I* is given by the equation below.
- The direction is given by the right-hand rule shown.

Right-hand rule for the magnetic field produced by a current in a loop:

 $=\frac{\mu_0}{2}\frac{\mu}{2}$

When the fingers of your right hand curl in the direction of I, your right thumb points in the direction of \vec{B} .

•
$$\vec{B} = \frac{\mu_0 \vec{\mu}}{2\pi (x^2 + a^2)^{3/2}}$$
, for $x \gg a \qquad \vec{B}$

Magnetic field lines of a circular current loop

- The figure shows some of the magnetic field lines surrounding a circular current loop (magnetic dipole) in planes through the axis.
- The field lines for the circular current loop are closed curves that encircle the conductor; they are not circles, however.

Magnetic fields for MRI

- MRI (magnetic resonance imaging) requires a magnetic field of about 1.5 T.
- In a typical MRI scan, the patient lies inside a coil that produces the intense field.

• The currents required are very high, so the coils are bathed in liquid helium at a temperature of 4.2 K to keep them from overheating.